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Abstract— Operations Research has three major methods called Mathematical Programming Techniques, Stochastic Process Techniques 
and Statistical Methods. Mathematical Programming plays a vital role among them. This programming has too many branches. Stochastic 
Programming is one of these branches. Non-linear programming algorithms are classified into two algorithms. They are unconstrained and 
constrained nonlinear algorithms. In general, there is no algorithm for handling nonlinear models, mainly because of the irregular behaviour 
of the nonlinear functions. Perhaps the most general result applicable to the problem is the Kuhn Tucker conditions. In constrained non-
linear algorithms, stochastic programming techniques solve the non-linear problem by dealing with one or more linear problems that are 
extracted from the original program. This paper   deals with basic concepts in stochastic linear programming. There are two techniques viz. 
two stage programming and chance constrained programming  with an example which is solved in a computer in the Pascal Language.   

Index Terms—  Khun-Tucker Conditions, Non-linear programming, Mathematical programming, two stage programming, chance 
Programming, Stochastic process, Pascal language 

——————————      —————————— 

1 INTRODUCTION                                                                     

tochastic or Probabilistic programming deals with situa-
tions where some or all of the parameters of the optimiza-

tion problem are described by stochastic or random or proba-
bilistic variables rather than by deterministic quantities. The 
sources of random variables may be several, depending on the 
nature and the type of the problem. 
 Depending on the nature of equations involved in 
terms of random variables in the problem a stochastic optimi-
zation-problem is called a stochastic linear or dynamic or non-
linear programming problem. 
 The basic idea used in solving any stochastic pro-
gramming problem is to convert the stochastic problem into 
an equivalent deterministic problem. The resulting determinis-
tic problem is then solved by using the familiar techniques like 
linear geometric, dynamic and non-linear programming. 
 
STOCHASTIC LINEAR PROGRAMMING 
 A stochastic linear programming problem can be stat-
ed as follows: 

 Mini f(x) = CTX = 


2n

1j
XjCj    

 .... (1.1) 
subject to 

 



n

1j
ijij

T
i bxaXA i = 1,2,....m  

 .... (1.2) 
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and 
 xj > O j = 1,2,.....n    
 ... (1.3) 
where cj, aij and bi are random variables and xj are assumed to 
be deterministic with known probability distributions. Several 
methods are available for solving the problem stated in (1.1) – 
(1.3). Here we are dealing with only two methods namely the 
two stage programming technique and the chance constrained 
programming technique. 
 Before dealing we shall see some examples for sto-
chastic programming problems and shall examine the difficul-
ties involved in their solution. 
 
SEQUENTIAL STOCHASTIC PROGRAMMING PROB-
LEM 
 Consider the inventory problem in which plans are 
being made to control the inventory of single item over the 
time period of n years. It is assumed that the orders to replen-
ish the inventory are placed at the beginning of each year, so 
that the quantity required comes into inventory before the end 
of that year. The demand in every year is treated as continuous 
random variable and also the demands in different years are 
assumed to be independent variables. If xj denotes the number 
of units being ordered, then the cost of procuring xj units at 
the beginning of jth year will be, 

jjjj xcA  , 

  Where 







0xfor1
0xfor0

j
j

j
 and 

  Aj is fixe charge. 
There costs associated with the inventory problem are 

the carrying cost and the stock out cost. Ignoring the accuracy 
of these we assume that kj hj and πj sj are the carrying cost and 
stock-out cost, respectively for the jth year. Here hj > 0 denotes 
the inventory in hand at the end of jth year and sj > 0 denotes 
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the number of back orders at the end of jth year. Let us define, 
Y1 = Inventory in hand at the beginning of 1st year 
vi = Demand in the ith year 
xi = Quantity order in the ith year 

Using these notations, the inventory in hand at the end of jth 
year is given by 

hj = Y1 + 


j

1i
i

j

1i
i vx  if hj > 0 

The number of backorder at the end of jth year will be given by 

 Sj =  
 


j

1i

j

1i
i1ii yxv  if Sj > 0 

 It is to be noted that one of the carrying cost and 
stockout cost disappear in the presence of the other. So let us 
define a new function, 
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Then the cost of operating the inventory system for the n years 
time period will be 
 

    
  











n
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j
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j

1i
ii1jj

n

1j
jjjjj vxyFaxcAa  

Where αi is the discounting factor. If αi = 1, then there will be 
no discounting factor. The probability density function for 
getting a specific set of vj is 

        n21j

n

1j
v....vvv 


 

Thus for any given set of xj > 0, the expected cost over n years 
time period is given by, 
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dv1...dvn 
When the decision is made on how much to order for period 
K, the optimal value of xk will depend upon yk. Using the 
technique of dynamic programming we find out the functions 
xk(yk), where the value of yk, is given by 

 yk = y1 +  









1k

1i

1k

1i
ii vx  

TWO STAGE PROGRAMMING TECHNIQUE 
INTRODUCTION 
 The two-stage programming technique converts a 
stochastic linear programming problem into an equivalent 
deterministic problem. Assume that the elements bi are proba-
bilistic. This means that the variable bi is not known but its 
probability distribution function with a finite mean bi is 
known to us. In this case it is impossible to find a vector X in 

such a way that XAT
i will be greater than or equal to bi (i = 

1,2,.....m) for whatever value bi takes. The difference between 
XAT

i  and bi a random variable, whose probability distribu-
tion function depends on the value of X chosen. 
 One can now think of associating a penalty for viola-
tion we might get for the constraints. In this case, we can think 
of minimizing the sum of CTX and the expected value of the 
penalty. There are several choices for the penalty. One choice is 
to assume a constant penalty cost of pi for violating the ith con-
straint by one unit. Thus the total penalty is given by the ex-
pected (mean) value of the sum of the individual penalties, 

 


m

1i
iiypE  where E is the expectation and yi is defined as, 

 yi = bi - ,XAT
i yi > 0 I = 1,2,……m … (2.1) 

After adding the mean total penalty cost to the original objec-
tive function, the new optimization problem becomes 
 Minimize CTX + E (PTY)    
      … (2.2) 
subject to 
 AX + BY = b     
      … (2.3) 
and 
 X > 0, Y > 0     
      … (2.4) 
Where 

 P = 

























m

2

1

p
.
.
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p
p

 Y = 

























m
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y
.
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y
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and B = I = Identity matrix of order m. 
 The penalty term in Eqn. (2.2) will be a deterministic 
quantity in terms of the expected values of yi, iy . For eg. if bi 
follows uniform (rectangular) distribution in the range 
 iiii mb,mb   and iy  denotes ib  - ,XAT

i  then the 
mean penalty cost can be shown to be equal to 
 E(piyi) = pi1 + pi2 + pi3    
      ... (2.5) 
Where 
 pi1 = 0  if iy  > mi   
      ... (2.6) 

 Pi2 = 0 
 

sds
m2
p

i

i
ym

0s

ii






  if – mi < iy  < mi 

      … (2.7) 
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Pi3 = 0 
 

 

sds
m2
p

i

i
ym

yms

ii

ii






 if iy  < mi 

      … (2.8) 
From (2.7) 

Pi2 = ii ym
0s

2

i

i

2
s

m2
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 =  2ii
i

i ym
m4
p

    

      … (2.9) 
From (2.8) 

 Pi3 =  
 ii

ii

ym
yms

2

i

i
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m2
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 =     2
ii

2
ii ymym

mi4
pi   

   

    =       iiiiiiii ymymymym
mi4
pi   

 = 
mi4
pi  ii my4  

 = ii yp     
      … (2.10) 
Using (2.6), (2.6) and (2.10) in (2.5) we have, 

 E(piyi) = 
mi4
pi  2ii ym  ii yp   

      … (2.11) 
Which is a quadratic function of deterministic variable iy . 
To convert the problem stated in equations (2.1) to (2.4) to a 
fully deterministic one, the probability constraints eqn. (2.3) 
have to be written either in a deterministic form like iy = ib -

,XAT
i  or interpreted as a two-stage problem as follows. 

 
FIRST STAGE 
 First estimate the vector b, and find the vector X by 
solving the problem stated in eqns. (1.1) to (1.3). 
 
SECOND STAGE 
 Then observe the value of b and hence its discrepancy 
from the previous guess vector and find the vector y = Y (b,X) 
by solving the second stage problem: 
 Find Y which minimize PTY 
 Subject to 
 yi = bi - ,XAT

i  I = 1,2,….m   
      … (2.12) 
 and yi > 0, I = 1,2….m 
 where bi and X are known now. 

Thus the two-stage formulation can be interpreted to mean 
that a non-negative vector X must be found before the actual 
values of bi (i = 1,2…..m) are known, and that when they are 
known, a recourse Y must be found by solving the second 
stage problem of Equations (2.12). Hence a general two stage 
problem can be stated as follows: 
Minimize CTX + E   YPmin T  
subject to      
      … (2.13) 
  

A X + B Y > b 
mxn1 n1x1  mxn2 n2x1  mx1 

Where b is a random m-dimensional vector with known prob-
ability distribution F(b) and probability density function                
dF(b) = f(b) 
The following assumptions are generally made to solve this 
problem. 

(i) The penalty cost vector P is a known                   
deterministic vector and 

(ii) There exists a nonempty convex set S consisting 
of  

non-negative solution vectors X such that for each b there ex-
ists a solution vector Y(b) so that the pair [X, Y(b)] is feasible. 
The 2nd assumption is called the 
Assumption of permanent feasibility. By defining, 

 





  2

D

1 nnmx  = [A, B]    

   … (2.14) 

 1xnn
Q

1 





   = 








P
C

    

   … (2.15) 
and 

 1xnn
)b(Z

21 





   = 



 X

)b(Y    

   … (2.16) 
The two stage problem stated in equation (2.13) can be as           
follows: 

Minimize  )b(f)b(ZQT  = expected cost 

Subject to D z(b) > b 
 And z(b) > 0 V b 
 
Example: Find the optimal values of factory production (x1) 
excess supply (x2) and the amount purchased from outside (x3) 
of commodity, for which the market demand (r) is a uniformly 

distributed r.v. with a density function of f(r) =  7080
1


. 

Each unit produced in the factory costs Rs. 1 whereas each 
unit purchased from outside costs Rs.2. The constraints are 
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that 
(i) The total supply of the commodity (x1 + x3) should not 

be less than the demand (r) and 
(ii) Due to storage space and other restrictions, the 

amount of production in the factory (x1) plus the 
amount stored (x4) should be equal to 100 units. 

 
Solution: 
 This problem can be stated as follows: 
 Minimize f = x1 + 2.x3 
   = cost of production + cost of purchasing out-
side. 
 Subject to 
    
   x1 + x4 = 100 
 and x1 + x3 – x2 = r 
 where xi > 0, i = 1,2,3,4. 

   f(r) =  7080
1


 = 
10
1

 

since the second constraint is probabilistic, we assume perma-
nent feasibility condition for it. This means that it is possible to 
choose x3, outside purchase and x2, excess supply for whatever 
may be the feasible values of x1, factory production and x4, 
amount stored. 
 It can be seen that if x1 > r for any particular value of r, 
then x3 = 0 gives the minimum value of f. However, if x1 < r 
then x3 = r – x1 gives the minimum values of f since x1 is 
cheaper than x3. Thus we obtain 
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Since the market demand is probabilistic, we have to consider 
the following three cases. 
 
Case (i): When x1 > 80 i.e., when x1 > r 
 E (minimum f) = E(x1) = x1 
Case (ii): When x1 < 70 i.e., whe x1 < r 
 E (minimum f) = E[x1 + 2 (r-x1)] 

 =    





 


80

7

1
80

70
11 dr

10
xr2dr)r(fx2r2x  

 = 
10

x704900x806400
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80

10
xrr 111
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 = 
10

x101500 1
 = 150 – x1 

Case (iii): When 70 < x1 < 80. Here the demand may be less 
than, equal to or greater than x1: 
 E(minimum f) = 
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10
1 2

1   

Hence the total expected cost function is a quadratic function 
in x1. 
Its minimum is given by, 

 E(min f) = 







 6400x150

1
2

x
10
1

1  

  150x2
10
1

dx
dE

1
1

  

  = 15
5
x1   

 015
5
x0

dx
dE 1

1

  

   15
5
x1   

    x1 = 75 
 
Hence this value satisfies the first constraint also we obtain the 
optimum solution as 
   x1 = E(r) = 75,  x2 = 0 
   x3 = r – 75 with E(x3) = 0, 
   x4 = 25. 
 
CHANCE – CONSTRAINED PROGRAMMING TECH-
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NIQUE 
An important class of stochastic programming problems is the 
chance-constrained problems. These problems were initially 
studied by A. Charnes and W.W. Cooper. In a stochastic pro-
gramming problem some constraints may be deterministic 
and the remaining may involve random elements. On the oth-
er hand, in a chance-constrained programming problem, the 
latter set of constraints is not required to always hold, but 
these must hold simultaneously or individually with given 
probabilities. In other words, we are given a set of probability 
measure indicating the extent of violation of the random con-
straints. The general chance-constrained linear program is of 
the form: 

 Minimize f(x) = 


n

1j
jj xc    

   ... (3.1) 
Subject to 

 P ,pbbxai ii

n

1j
ijj 



















 i = 1,2,....m 

   ... (3.2) 
And xj > 0,  j = 1,2.....m   
   ... (3.3) 
Where cj, aij, bi are random variables and pi are specified prob-
abilities. Eqn. (3.2) indicate that the ith constraint 

 



n

1j
ijj bxai  

has to be satisfied with a probability of atleast pi where 0 < pi< 
1. Assume that the decision variables xj are deterministic. First 
we consider the special case where only cj or aij or bj are ran-
dom variables. After we consider the case in which cj, aij and bi 
are all random variables. Further we shall assume that all the 
random variables are normally distributed with known mean 
and standard deviations. 
 
ONLY aij’s ARE RANDOM VARIABLES 

 Let ija and Var(aij) = 2

a ij
be the mean and the vari-

ance of the normally distributed random variables aij. Also 
assume that the multivariate distribution of aij, i = 1,2...m, j = 
1,2...n is also known along with the covariance, Cov (aij, akl) 
between the random variables aij and akl. Define quantities di 
as 

 di = 


n

1j
jj xai   i = 1,2....m  

   ... (3.4) 
Since ai1, ai2,...... ain are normally distributed, and x1, x2 .... xn 
are constants di will also be normally distributed with the 
mean value of 

 



n

1j
jiji xad   i = 1,2,...m 

   ... (3.5) 
And a variance of 

 Var (di) = 2

di
 = XTviX    

   ... (3.6) 
Where Vi is the ith covariance matrix defined as 
 
 Var(ai1) (Cov(ai1, ai2) ....... Cov(ai1, ain) 
 (Cov(ai1, ai2) Var(ai2) ....... Cov(ai2, ain) 
 . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .   
   ... (3.7) 
 (Cov(ain, ai1) Cov(ain, ai2) ....... Var(ai2)  
 
The constraint or equation (3.2) can be expressed as 
 P[di < bi] > pi 
 

i.e. P i
i

ii

i

ii p
)dvar(

db
)d(var

dd












 



  i = 

1,2....m  ...(3.8) 

where 
)d(var

dd

i

ii  can be a standard normal variate with a 

mean of zero and a variance of one. Thus the probability of di 
smaller than or equal to bi can be 

 P[di < pi] = φ 








 
)dvar(

db

i

ii    

   ... (3.9) 
Where φ(x) represents the cumulative distribution function of 
the standard normal distribution evaluated at x. If ei denotes 
the value of the standard normal variable at which 
 Φ(ei) = pi     

  ... (3.10) 
Then the constraints in Eqn. (3.8) can be stated as 

 φ  i
i

ii e
)dvar(

db










 
  i = 1,2,....m 

   ... (3.11) 
These inequalities will be satisfied only if, 

 








 
)dvar(

db

i

ii > ei  

  (or) 

iiii b)dvar(ed  < 0,  i = 1,2,...m  

   ... (3.12) 
By substituting Eqn. (3.5) and 3.6) in 3.12) 
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n

1j
jij xa + ei XVX i

T  - bi < 0  i = 1,2,.....m

  ... (3.13) 
These are the deterministic non-linear constraints equivalent 
to the original stochastic linear constraints. 
 Thus the solution of the stochastic programming 
problem stated in Eqns. (3.1) to (3.3) can be obtained by solv-
ing the equivalent deterministic programming problem. 

 Minimize f(x) = 


n

1j
jj xc subject to 

 


n

1j
jij xa + ei XVX i

T  - bi < 0,  i = 

1,2,....m  ... (3.14) 
and xj > 0, j = 1,2,.....n. 
 If the normally distributed random variables aij are 
independent the covariance terms will be zero and equation 
(3.7) reduces to a diagonal matrix as 

 

















)a(Var00
0)a(Var0
00)a(Var

3i

2i

1i

  

    ... (3.15) 
 In this case the constraints of Eqn. (3.13) reduce to 

 


n

1j
jij xa + ei  



n

1j

2
jj x)ai(Var - bi < 0 

 i = 1,2,....m  ... (3.16) 
 
ONLY bi’s ARE RANDOM VARIABLES: 
 Let bi and var(bi) denote the mean and variance of the 
normally distributed random variable bi. The constraints of 
equation (3.2) can be restated as 

 P 
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jij bxa = P 
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ii > pi   i = 

1,2,...m   ... (3.17) 

Where 
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i

ii  is a standard normal variable with zero 

mean and unit variance. The inequalities (3.17) can also be 
stated as, 

 1 – P 
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ii > pi  i = 

1,2,....m 
   (or)  
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n
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i

ii < 1-pi  i = 

1,2,...m   ... (3.18) 
If Ei represents the value of the standard normal variate at 
which Φ (Ei) = 1-pi. 
The constraints in Eqn. (3.18) can be expressed as 

 Φ 






















)bvar(

bxa

i

i

n

1j
jij

< Φ (Ei)  i = 1,2.,....m

   ... (3.19) 
These inequalities will be satisfied only if 

 
)bvar(

bxa

i

i

n

1j
jij 

  < Ei   i = 1,2,...m 

  (or) 

 i

n

1j
jij bxa 



 - Ei )bvar( i  < 0, i = 1,2,....m

   ... (3.20) 
 
Thus the stochastic linear programming problem stated in 
equations (3.1) to (3.3) is equivalent to the following determin-
istic linear programming problem. 

 Minimize f(x) = 


n

1j
jj xc  

Subject to i

n

1j
jij bxa 



 - Ei )bvar( i  < 0, i = 1,2,...m 

and 
 xj > 0, j = 1,2,...m    
   ... (3.21) 
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CONCLUSION 
Stochastic programming techniques are useful whenever the 
parameters of the optimization problem are stochastic or ran-
dom in nature. The basic idea used in all the stochastic optimi-
zation techniques is to convert the problem into an equivalent 
deterministic problem so that the techniques of linear can be 
applied to find the optimum solution. In stochastic program-
ming problems, the two stage programming and the chance 
constrained programming techniques are presented for solv-
ing a stochastic linear programming problem. On the other 
hand the solution of stochastic nonlinear programming prob-
lems is considered using chance constrained programming 
technique only. 
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